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Corrections to the Kelvin equation for long-range boundary fields
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The properties of a simple fluid, or Ising magnet, confined irLatr geometry, are studied by means of
numerical density-matrix renormalization-group techniques. Whereas the particle-particle interactions are short
ranged, the wall-particle interactions can be long ranged. Using a few complementary criteria the wetting
transition line has been found for boundary fields with different rari@geuding a marginal cageand its
scaling form has been analyzed. A main goal was to analyze the influence of wetting on the scaling of the
Kelvin equation, focusing on the leading correction term. We have found that at complete wetting the larger the
range of the boundary fields, the smaller the region of anomalous corrections of tyf& 1/
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I. INTRODUCTION 0gC0sA1l

(1)

Wetting phenomena are very common in nafure3]; the
most familiar situation is a liquid-vapor system in a contactwhere o, m,, and @ are the surface tension, bulk spontane-
with a solid wall. Usually one considers a semi-infinite ge-ous magnetization, and contact angle, respectively. This phe-
ometry with a solid planar wall that preferentially adsorbsnomenon is analogous to the capillary condensation for a
one of the phases of a system in thermodynamic equilibriumluid confined between parallel surfaces, where the gas-liquid
Below the bulk critical temperaturg., the adsorbed phase transition occurs at a lower pressure than in the bulk. More-
forms either isolated dropleta dry regimg or a thick mac-  over, the finite size scaling predicts that the capillary critical
roscopic layera wet regime The first case, known as par- point[hy(L),T,(L)] (see Fig. 1 scales as
tial wetting, occurs for temperatures below the wetting tem- -1y ~(d-BIv)
peratureT,,, while the second case occurs fgy<T<T, and TeL)=Te~L and h(L)~L , (2
it is referred to as complete wettirigee Fig. 1. Here, as a \yhered is the dimensionality and and 3 are the correlation
model system, the Ising model is considered in a tWo4ength and magnetization exponef@.
dimensional(d=2) geometry and both phases, a liquid one  Capillary condensation with long-range boundary fields in
and a vapor one, correspond to two phases with oppositgn| x « geometry was analyzed by Albaebal.[10]. Using
magnetization. The fact that a wall can favor one of themonte Carlo simulations they confirmed also here the domi-
phases corresponds, in Ising language, to introducing surfagent role of the 1l contribution.
magnetic fieldh;. The bulk magnetic fielch refers to the The next order correction term to the Kelvin equation was
chemical potential of the liquid-vapor system. In the2  studied by Albanet al.[6] and by Parry and Evan3]. Both
semi-infinite Ising model the wetting temperature is knownstydies, using scaling and thermodynamics arguments, con-
exactly [4] and decreases monotonically with the surfaceciuded that at partial wetting, the leading correction to scal-
field h, (the solid line in Fig. 2 ing term is of type 1L2. In the case of complete wetting the

For d=2 Ising strips of a finite widtfL (with opposing  correction is expected to be nonanalytic due to a singularity
surface fieldsh,=-h;) a partial wetting is restricted to tem- of the surface free energy. For tHe 2 Ising mode[6,7] the
peratures below the so-called interface delocalizatiy  predicted correction term is proportional to LFR. The
temperatureTy(L) [case(2) in Fig. 1]. For the short-range Monte Carlo datd10] for long-range boundary fields were
boundary fields, wheh grows to infinity T4(L) scales to the not accurate enough to convincingly test the type of correc-
wetting temperatur@,, asTy(L) - T,,~L Y%, whereBsis the  tions to scaling.
exponent describing the divergence of the thickness of the In a subsequent investigation, using density-matrix
wetting layer for a semi-infinite systefs]. renormalization-group(DMRG) techniques, it was found

In this paper we analyze the effect of wetting on the ther{11] that for a wide regime of short-range boundary fields
modynamics of the Ising model confined in laix % geom-  and temperatures, higher order corrections are of typéd /
etry with identical boundaries. Fdr— oo, i.e., in the bulk, This apparent disagreement was due to the fact that even for
phase coexistence occurs for temperatufesT. and for the large sizes considerétd ~ 150 the wetting layer had a
vanishing bulk magnetic field=0. It is well known that the limited thickness, so that the singular part of the surface free
combined effect of identical boundary fields and confinementnergy which determines the correction to scaling behavior
shifts phase coexistence to a finite value of the bulk magnetizzas dominated by the contacts with the walls. In this case a
field h=hy(L) # 0 [case(1) in Fig. 1] [6,7]. For short-range simple random walk argument indeed predicts the leading
boundary fields this line scales for large according to the correction term of the type 1/ for a thin wetting layer
Kelvin equation[8], as [11].
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FIG. 1. Phase diagram of tteedimensional Ising model for a h,

bulk system in théh,T) plane(h in units of J, T in units of J/kg).
The dashed lines are the phase diagrams of confined systems w
identical (1) and opposind?2) surface fields.

. FIG. 2. Phase diagram of the interface delocalization transition
'ftgr p=50 (short-range boundary fieldsand p=3 (long-range
boundary fieldsin the L — <o limit (h; in units of J, T,, in units of
J/kg). For p=3 the limiting T—O0 value is known exactly

In order to complete the picture, it is natural to extend the(s= |-3)-1,
considerations to the long-range case, especially since that it

is known [2,3] that long-range forces modify the wetting of sites, while in the second terimis the bulk magnetic field

behavior significantly. Therefore, in the present paper, W%cting on all sites. The valuel=H+H?,,  is the total

study an Ising model with long-range boundary fields. It is e : -
undary magnetic field experienced by a spin in column
reasonable to expect that for such a case the wet layer sho . st <

e single-boundary fielt; is assumed to have a forki

be thicker with respect to the short-range case, which is = ' < . i
likely to shrink the region with anomalous correctido$ the =h/IP with p=0, and the reduced amplitude of the bound

2 X . ary fieldh;=0.
type 11%%) to the Kelvin equation. In order to study how the long-range interactions between
II. MODEL walls and spins modify the corrections to the Kelvin equation

. . we analyze first their influence on the wetting temperature.
In spite of the name, the DMRG has only some analogies y 9 P

with the traditional renormalization group being essentially a
numerical, iterative basis, truncation method. It was pro- ll. THE WETTING TRANSITION

of quantum chain spin Hamiltoniangl2]. Later, it was have applied three criteria. For all cases the finite system
adopted by Nishino fod=2 classical systems at nonzero cajcylations were done firat fixedL) and then extrapolated
temperaturefl3]. The DMRG method allows to study much tg nfinity to recover the wetting transition line. To compare
larger systemsup toL.=690 in this pap@rthan it is possible  oyr results with the short-range boundary fields case, where
with standard exact diagonalization methddp to L the exact results exift], we putp=50. As we have checked
=20-30 for Ising stripsand provides data with remarkable the H, value forI=2, ... L-1 is here so small that internal
accuracy. In the application of the DMRG method for clas-spins are practically not affected by the boundary fields at
sical d=2 spin systems, symmetric transfer matrices arey|. |n order to analyze the long-range case we perform our
used. Comparisons with exact results for the case of vanishsgdies forp=3. That is a marginal case, where both energy
ing bulk magnetic field and boundary fields acting only onang entropy of relevant degrees of freedom scale with
spins in the surface layers, show that this technique giveghe same waj2,10,16—18 There is no wetting transition for
very accurate results in a wide range of temperat{itd fields which drop off more slowly than 13, In this case the
Recently the method has been also applied to an Ising filjhterface remains pinned to the wall at all finite temperature.
subject to long-range boundary fields to study the solvatiofegr p>3 the entropic contribution dominates and critical

force behaviof15]. S behavior is the same as for the short-range case.
Our results refer to thel=2 strip defined on the square

lattice of the sizeM XL, M—c. The lattice consists off

parallel columns at spacing=1, so that the width of the
strip isLa=L. We label successive columns by the index  The singularity(or a maximum of the magnetic suscep-
At each site, labeledk,!), there is an Ising spin variable tibility x is one of the most popular criteria for localization
taking the valuer, = +1. We assume nearest-neighbor inter-0f a phase transitiofor a pseudophase transition for a finite

actions of strengtld and Hamiltonian of the form system. The magnetic susceptibility can be calculated di-
rectly from the fluctuations of the total magnetization. It is

used, e.g., in Monte Carlo simulatiof0]. This is less con-
venient for the DMRG method, where the free energy is
calculated straightforwardly with very high accuracy. There-
whereh andH, are in units of the coupling constadt The  fore it is natural to use an alternative expression, known from
first term in Eq.(3) is a sum over all nearest-neighbor pairs thermodynamic$19], relating the magnetic susceptibility to

A. Magnetic susceptibility

L
H:_J 2 0'k|0'k/|/+h2 O'k|+2 H|E gy (» (3)
(KILK'l"Y ki 1=1 k
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the second derivative of the free eneifgyith respect to the Although all derivatives have been performed in a numerical
bulk magnetic fieldh. way, the DMRG method accuracy guarantees very precise
Nevertheless our case is a bit special, because we want tesults. _ o
determine the transition line at zero bulk figlsee Fig. 2, In contrast to thel=2 Ising strip with short-range bound-

where in the dry regimébelow the wetting transition line ary fields or long-range boundary fields with-3 where the
there is a first order transition region. For infinite systemscaling isTy(L)-T,~L"*, Albanoet al.[10] have proposed
there is a coexistence of phases with opposing magnetiz&n alternative formula for the long-range casgag. They
tions. So, there is a discontinuity of the first derivative of the@rgued that the ID transition may be shifted away from the
free energy(a jump of the magnetizatiom=-df/dh), when wetting tran5|t|or_12 temperaturd,, according to the rule
the bulk magnetic field changes sign. That is the reason whyld(L) ~Tw=(InL)™ 1t would mean thatTy(L) would be

in order to calculate (a reaction of a system for a change of MOre strongly depressed from, with decreasind. than in

the bulk magnetic fieldhere, one should calculate the de- the short-range case. Because their data did not allow them
rivatives for small nonzero bulk fields and then kego to tqdd'St('jn?#'Sh betz)tlween these two possibilities we have con-
zero. In the wet regimébove the wetting transition lin¢he sidered this problem again. . .
most likely are the configurations, where an interface mean-. ;—gfepégt;&g‘gtg dITth?.it?,va;sO\gxg]gt;h debsgfil;zgl-?g\?vz\\//lgrr it
ders freely between walls and where there is no discontinuit i '

S NUIYS worth recalling that Albanet al.[10] analyzed the scaling
gog;dfree energy derivatives, when tie=0 plane is ¢ o\ maxima, whereas we analyze the scaling of tge

, . maximal slope. For both extrapolatiorfagainst 1L and
For numerical calculation@s for the DMRG methddhe  54inst 1(In L)) and various values of the reduced ampli-
necessity of performing an extra limit— 0 in this casgis

: tude of the boundary fielti; there are higher order correc-
troublesome. Therefore we decided to use another quantityyns that seem to be opposite to the leading term. The most

Xo instead ofy, which is also the second derivative of the |ikely scenario is that due to them there are maxima for some

free energy at fixed andh;, but calculated in a symmetrical yalues ofL and only for largeiL the data apparently follow

way with respect to thén=0 plane(by means of the free the leading term. The smalléy is the larger is neccessary

energy values taken for five equidistant pointsAh2—-Ah,  to reach a maximum. Therefore we are not able to present

0, Ah or 2Ah; we usedAh=107 typically). Because our them for h;=0.025 andh,=0.2, although our calculations

calculations are always carried out for finite there is not  have been done up 10=300-400.

anymore a discontinuity of the magnetization in the dry re- In order to distinguish between both extrapolations we

gime. They are replaced by rounded, but very steep, funceompare the data dt,=0.6 for L larger than the maximum

tions when theh=0 plane is crossed. position(up toL=490). Though there is no strong difference
In order to determine the ID transition we scan the phaséor both curves we have checked that the better linear ap-

diagram at fixech;. The higher the temperature is, the lessproximation is for the 1l case. Therefore it is very likely

steep are magnetizations and the values of their derivggive that the scaling for long-range=3 boundary fields has the

are smaller. Above the wetting transition line, where a dissame asymptotic form as for short-range ones.

continuity never existsy, saturates to the zero, wheh ) _

grows (xg is equivalent toy here. Therefore, at fixed., the B. Scaling of profiles

ID transition can be indicated by the maximal slope of the Our second criterion is based on a shape of a profile. It is

or the minimum of its derivative with respect to temperature known [20] that for the short-range case for infinite Ising
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FIG. 4. Magnetization profilesn(l) versus(I-1)/(L-1) at T C. Specific heat

=1.8[(I-1)/(L-1) and magnetization are dimensionigss The third criterion is based on the behavior of the specific

_ _ _ _ -~ heatCy, , which is calculated as the second derivative of the
strips with opposing boundary fields at the ID transition thegree energy with respect to temperature at fixed It is
interface meanders in such a way that the magnetization grgnown [21] that there are two maxima &, . Whereas the

O . N
dient is constant over the whole width Therefore the mag-  gyonger one is related , [22], the weaker one corresponds
netization profile is characterized by the scaling function of &0 the wetting. Wherh, goes down the second maximum
linear form merges in the first one, which prevents one from calculating
Ty4(hy; L) for smallh;.
: 2 As one can see in Fig. 2 the third criterion results coincide
m(l) =mp| 1 A (4 with the previous ones.

. " ) IV. KELVIN EQUATION
In order to localize the ID transitioffy(h;;L) at a certain

temperatureT' boundary field scans can be performed for In order to find the corrections to the Kelvin equation it is

lengthsL andL+2. The profiles are compared according to Preferable to consider only temperatures not too closk;to
the quantity where DMRG iterations converge very quickly. Moreover,

when one is far belowl, one avoids the effect of crossover
L S from an initial scaling(for small L) according to Eq.2)
d(L) = }E (@) 5) towards the final scalingfor enough large.) according to
LS\ my the Kelvin equation. In the present study we have calculated
a series of values dfy(L) up toL=690 with different values
] o o of boundary fields aT=1.
which measures a deviation from the bulk magnetization. To o calculations have been carried out for two ranges of
compare the data for andL+2 we rescald to value (I poyndary fieldsp=3 andp=9. Whereas the first case is the
—1)/(L-1) which varies between 0 and 1. Then at the valuemgarginal long-range case for wetting, the second one is to
of hy, whered(L) andd(L +2) cross each other as functions show that here we practically meet short-range behavior.
of hy, both profiles are the most similar. This optimal scaling  We assume the following expansion for the bulk magnetic
corresponds to the ID transition. The procedure can be affeld ho, Which restores the phase coexistence:
plied to the long-range case as well. As one can see in Fig. 2
the limiting L — <0 results are in an excellent agreement with
those from the first criterion.
It is worth stressing that although profiles for subsequent . .
L andL+2 are of thegsame Sha@é%_)gd(l__,_z) on the |g where we expectr=1 andA to be given by the Kelvin equa-
transition lind they change wheh grows. Figure 4 collects tion [Eq. 1. In o_rder_to cal_culgte t.he exponentsand y we
the data for bothp at T=1.8. Forp=50, which means the define the logarithmic derivatives:
short-range boundary fields, the profiles collapse rapidly to In[ho(L)] = In[hy(L + 30)]
the straight line. The largel is the smaller are the minor XL == InL - In(L + 30)
deviations at ends. A similar scenario holdpat3. Although
generally plots are here less linear, they seem also to corfier L=30,60,...,69Qin steps ofL=30). Then introducing
verge towards the universal shape predicted for the case tfie expansiori6) into the definition(7) one has to the lowest
short-range boundary fields. orders in 1L

A B
ho(L) = — +— + -+, 6
o=t ®)

, ()
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FIG. 8. The plots of lfx_—1) versus IrL for the long-range
boundary field{p=3). The meaning of the symbols is the same as
in Fig. 6 (L in units of lattice constanty, dimensionless

As one can see in Figs. 5 and 6 the values of the leading
scaling exponent, obtained from the DMRG converge very
well to the expected value=1 [11]. Thus the Kelvin equa-

first case the wall-spin interactions decays so fast that thert on dependence is of fairly general char_acter anq I o_Ioe_s not
epend on the range of the boundary fields, which is in an

we expect short-ranged boundary behavior. From the exa . .
solution of Abraham one knows that the surface field corre-‘;’:gr;]e emegt with thet. Mg;mt?. Carl_caresu[tlsot]).t To c;on3|dEer
sponding to the wetting temperatuiig,=1, is equal toh; (8I§] er-order correctiongsettinge=1) one obtains from Eq.
~0.927. Therefore it is clear that the plots in Fig. 5 fgr
<0.927 correspond to the case of partial wetting, where the B
scaling behavior ofx, should be linear in 1/ since one In(x. = 1)=In K’ —(y=DInL+---. 9)
expectsy=2 and a=1 in Eq. (6). The fact that the data
follow straight lines confirms the behavior predicted by the Figures 7 and 8 show plots of (kg —1) versus IrL for
theory for the short-range cagp=9). It is worth noticing  different values of surface fields p=9 and 3, respectively.
that ath; =0.85, the data follow a straight line only for large In both cases the behavior at partial and complete wetting
L. Therefore, we can conclude that the cloberis to the can be clearly distinguished.
coexistence line valuéat h;~0.927 herg the largerL is At partial wetting the straight dotted lines with slope -1
necessary to reach an asymptotic regime. fit very well the asymptotic behavior, sg=2 here. At com-

A qualitatively similar behavior is observed for the long- plete wetting for largé. the plots are well fitted with dashed
range boundary fields in Fig. @t p=3), but the linear de- lines with slope —2/3y=5/3) in agreement with the current
pendence occurs here only beldw=0.80. It is in perfect theory. However, one can observe that the smaller the range

agreement with our data for the=3 wetting transition'see  of the boundary fields is, the largéris necessary to reach
Fig. 2), whereT,,=1 for h; ~0.73.

Figures 5 and 6 show plots af versus 1L for different
values of boundary fields @t=9 and 3, respectively. For the

1.0
-3
-4} i o—o p=9
i 05 | A
=5} 4
0.0

In(x,-1)
L4
m((-1)/L-1))

-——— Slope=-1
=10 [ ——— Slope=-2/3 -1.0
P Slope=-1/3 ‘ 0.0 0.2 0.4 0.6 0.8 1.0
4 5 6 (-1)/(L-1)

In(L
© FIG. 9. The magnetization profiles of the two coexisting phases
FIG. 7. The plots of Ifix, —1) versus IrL for the short-range at T=1 andh;=1 (for L=120), approaching complete wetting, for
boundary field{p=9). The meaning of the symbols is the same asdifferent boundary fields[(I-1)/(L-1) and magnetization are
in Fig. 5 (L in units of lattice constants dimensionless dimensionlesk
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the asymptotic regime. Therefore, in agreement with the pregeometry comparing the results to corresponding studies
vious resultg11], in Fig. 7 (a short-range case practically with short-range boundary fields.
the data for a large interval df (more or less up td- In the case of opposing fields at the walls the transition
=250 are well fitted by straight lines with slope =143 line of wetting was found for various values of the fields. In
=4/3). It is consistent with the previous explanation thatorder to determinate its location three criteria have been ap-
even for large system sizes, like=100—200, the wetting plied [based on thé¢pseudd magnetic susceptibility, magne-
layer has a limited thickness, so the singular part of the surtization profiles and specific hdaesulting in the data which
face free energy that determines the leading correction terr@oincide with one another in a perfect way. The data for the
behavior, is dominated by the contacts with the walls. In thisshort-range wall-particle interactions are in a full agreement
case a simple random walk argument predicts the correctiowith the exact result. For the long-range wall-particle inter-
of the typey=4/3 for athin wetting layer[11]. When the actions the transition line was found for the marginal case
range of the boundary fields grows, a wetting layer is gettindp=3), where both energy and entropy of relevant degrees of
thicker and for smallet. the asymptotic limit(y=5/3) is  freedom scale witlL in the same way. It is worth noticing
reachedsee Fig. 8. that this line is in agreement with the shift of the coexistence
The above arguments are illustrated in Fig. 9, where théine at fixed temperature found for the identical boundary
magnetization profiles for two coexisting phases are prefields.
sented. The magnetizations are plotted as a function of the In the case of identical boundary fields we have confirmed
scaled variablgl-1)/(L-1) at T=1 andh,=1; this corre- that the bulk coexistence field scales always according to the
sponds to a regime of complete wetting for bgth We  Kelvin equation and have verified the previous results for
should also stress that the profiles refer to bulk fields slightlyeading correction terms at partial and complete wetting. We
lower and higher than the coexistence fieldL). For bulk have found that for the long-range case the wet layer is
field exactly equal tchy(L) the magnetizations of the two thic'ker with respect 'to thg short—rang'e case Whi'Ch results in
coexisting phases are averaged and it is not possible to dighrinking of the region with the leading correction term of
tinguish between them. The negative bulk field favors a bulkhe type 1L*3. This confirms the previously proposed sce-
phase with negative magnetizatiovapo) but the positive Naro to lexplaln .the origin of the anqmalous corrections to
boundary fields favor the adsorption of positive spiiguid)  the Kelvin equation at complete wetting.
at the boundaries. Since far=T,, the positive spins forma ~ Generally, our studies have shown that a range of bound-
layer that wets the walls. Obviously for a long-range bound-2ry fields is not relevant at the marginal cgse3 in the
ary fields (p=3) the wetting layer is thicker than for the @symptotic regime of large.
short-range casep=9). ACKNOWLEDGMENTS
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