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The properties of a simple fluid, or Ising magnet, confined in anL3` geometry, are studied by means of
numerical density-matrix renormalization-group techniques. Whereas the particle-particle interactions are short
ranged, the wall-particle interactions can be long ranged. Using a few complementary criteria the wetting
transition line has been found for boundary fields with different rangessincluding a marginal cased and its
scaling form has been analyzed. A main goal was to analyze the influence of wetting on the scaling of the
Kelvin equation, focusing on the leading correction term. We have found that at complete wetting the larger the
range of the boundary fields, the smaller the region of anomalous corrections of type 1/L4/3.
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I. INTRODUCTION

Wetting phenomena are very common in naturef1–3g; the
most familiar situation is a liquid-vapor system in a contact
with a solid wall. Usually one considers a semi-infinite ge-
ometry with a solid planar wall that preferentially adsorbs
one of the phases of a system in thermodynamic equilibrium.
Below the bulk critical temperatureTc, the adsorbed phase
forms either isolated dropletssa dry regimed or a thick mac-
roscopic layersa wet regimed. The first case, known as par-
tial wetting, occurs for temperatures below the wetting tem-
peratureTw, while the second case occurs forTwøT,Tc and
it is referred to as complete wettingssee Fig. 1d. Here, as a
model system, the Ising model is considered in a two-
dimensionalsd=2d geometry and both phases, a liquid one
and a vapor one, correspond to two phases with opposite
magnetization. The fact that a wall can favor one of the
phases corresponds, in Ising language, to introducing surface
magnetic fieldh1. The bulk magnetic fieldh refers to the
chemical potential of the liquid-vapor system. In thed=2
semi-infinite Ising model the wetting temperature is known
exactly f4g and decreases monotonically with the surface
field h1 sthe solid line in Fig. 2d.

For d=2 Ising strips of a finite widthL swith opposing
surface fieldsh2=−h1d a partial wetting is restricted to tem-
peratures below the so-called interface delocalizationsIDd
temperatureTdsLd fcases2d in Fig. 1g. For the short-range
boundary fields, whenL grows to infinityTdsLd scales to the
wetting temperatureTw asTdsLd−Tw<L−1/bs, wherebs is the
exponent describing the divergence of the thickness of the
wetting layer for a semi-infinite systemf5g.

In this paper we analyze the effect of wetting on the ther-
modynamics of the Ising model confined in anL3` geom-
etry with identical boundaries. ForL→`, i.e., in the bulk,
phase coexistence occurs for temperaturesT,Tc and for
vanishing bulk magnetic fieldh=0. It is well known that the
combined effect of identical boundary fields and confinement
shifts phase coexistence to a finite value of the bulk magnetic
field h=h0sLdÞ0 fcases1d in Fig. 1g f6,7g. For short-range
boundary fields this line scales for largeL, according to the
Kelvin equationf8g, as

h0sLd =
s0 cosu

mb

1

L
, s1d

wheres0, mb, andu are the surface tension, bulk spontane-
ous magnetization, and contact angle, respectively. This phe-
nomenon is analogous to the capillary condensation for a
fluid confined between parallel surfaces, where the gas-liquid
transition occurs at a lower pressure than in the bulk. More-
over, the finite size scaling predicts that the capillary critical
point fhcsLd ,TcsLdg ssee Fig. 1d scales as

TcsLd − Tc , L−1/n and hcsLd , L−sd−b/nd, s2d

whered is the dimensionality andn andb are the correlation
length and magnetization exponentsf9g.

Capillary condensation with long-range boundary fields in
anL3` geometry was analyzed by Albanoet al. f10g. Using
Monte Carlo simulations they confirmed also here the domi-
nant role of the 1/L contribution.

The next order correction term to the Kelvin equation was
studied by Albanoet al. f6g and by Parry and Evansf7g. Both
studies, using scaling and thermodynamics arguments, con-
cluded that at partial wetting, the leading correction to scal-
ing term is of type 1/L2. In the case of complete wetting the
correction is expected to be nonanalytic due to a singularity
of the surface free energy. For thed=2 Ising modelf6,7g the
predicted correction term is proportional to 1/L5/3. The
Monte Carlo dataf10g for long-range boundary fields were
not accurate enough to convincingly test the type of correc-
tions to scaling.

In a subsequent investigation, using density-matrix
renormalization-groupsDMRGd techniques, it was found
f11g that for a wide regime of short-range boundary fields
and temperatures, higher order corrections are of type 1/L4/3.
This apparent disagreement was due to the fact that even for
the large sizes consideredsL,150d the wetting layer had a
limited thickness, so that the singular part of the surface free
energy which determines the correction to scaling behavior
was dominated by the contacts with the walls. In this case a
simple random walk argument indeed predicts the leading
correction term of the type 1/L4/3 for a thin wetting layer
f11g.
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In order to complete the picture, it is natural to extend the
considerations to the long-range case, especially since that it
is known f2,3g that long-range forces modify the wetting
behavior significantly. Therefore, in the present paper, we
study an Ising model with long-range boundary fields. It is
reasonable to expect that for such a case the wet layer should
be thicker with respect to the short-range case, which is
likely to shrink the region with anomalous correctionssof the
type 1/L4/3d to the Kelvin equation.

II. MODEL

In spite of the name, the DMRG has only some analogies
with the traditional renormalization group being essentially a
numerical, iterative basis, truncation method. It was pro-
posed by White in 1992 as a new tool for the diagonalization
of quantum chain spin Hamiltoniansf12g. Later, it was
adopted by Nishino ford=2 classical systems at nonzero
temperaturesf13g. The DMRG method allows to study much
larger systemssup toL=690 in this paperd than it is possible
with standard exact diagonalization methodsup to L
=20–30 for Ising stripsd and provides data with remarkable
accuracy. In the application of the DMRG method for clas-
sical d=2 spin systems, symmetric transfer matrices are
used. Comparisons with exact results for the case of vanish-
ing bulk magnetic field and boundary fields acting only on
spins in the surface layers, show that this technique gives
very accurate results in a wide range of temperaturesf14g.
Recently the method has been also applied to an Ising film
subject to long-range boundary fields to study the solvation
force behaviorf15g.

Our results refer to thed=2 strip defined on the square
lattice of the sizeM 3L, M→`. The lattice consists ofL
parallel columns at spacinga=1, so that the width of the
strip is La=L. We label successive columns by the indexl.
At each site, labeledsk, ld, there is an Ising spin variable
taking the valueskl= ±1. We assume nearest-neighbor inter-
actions of strengthJ and Hamiltonian of the form

H = − JH o
kkl,k8l8l

sklsk8l8 + ho
kl

skl + o
l=1

L

Hlo
k

sklJ , s3d

whereh andHl are in units of the coupling constantJ. The
first term in Eq.s3d is a sum over all nearest-neighbor pairs

of sites, while in the second termh is the bulk magnetic field
acting on all sites. The valueHl =Hl

s+HL+1−l
s is the total

boundary magnetic field experienced by a spin in columnl.
The single-boundary fieldHl

s is assumed to have a formHl
s

=h1/ lp with p.0, and the reduced amplitude of the bound-
ary field h1ù0.

In order to study how the long-range interactions between
walls and spins modify the corrections to the Kelvin equation
we analyze first their influence on the wetting temperature.

III. THE WETTING TRANSITION

In order to determine a location of the ID transition we
have applied three criteria. For all cases the finite system
calculations were done firstsat fixedLd and then extrapolated
to infinity to recover the wetting transition line. To compare
our results with the short-range boundary fields case, where
the exact results existf4g, we putp=50. As we have checked
the Hl value for l =2, . . . ,L−1 is here so small that internal
spins are practically not affected by the boundary fields at
all. In order to analyze the long-range case we perform our
studies forp=3. That is a marginal case, where both energy
and entropy of relevant degrees of freedom scale withL in
the same wayf2,10,16–18g. There is no wetting transition for
fields which drop off more slowly than 1/l3. In this case the
interface remains pinned to the wall at all finite temperature.
For p.3 the entropic contribution dominates and critical
behavior is the same as for the short-range case.

A. Magnetic susceptibility

The singularitysor a maximumd of the magnetic suscep-
tibility x is one of the most popular criteria for localization
of a phase transitionsor a pseudophase transition for a finite
systemd. The magnetic susceptibility can be calculated di-
rectly from the fluctuations of the total magnetization. It is
used, e.g., in Monte Carlo simulationsf10g. This is less con-
venient for the DMRG method, where the free energy is
calculated straightforwardly with very high accuracy. There-
fore it is natural to use an alternative expression, known from
thermodynamicsf19g, relating the magnetic susceptibility to

FIG. 1. Phase diagram of thed-dimensional Ising model for a
bulk system in thesh,Td planesh in units of J, T in units of J/kBd.
The dashed lines are the phase diagrams of confined systems with
identical s1d and opposings2d surface fields.

FIG. 2. Phase diagram of the interface delocalization transition
for p=50 sshort-range boundary fieldsd and p=3 slong-range
boundary fieldsd in the L→` limit sh1 in units of J, Tw in units of
J/kBd. For p=3 the limiting T→0 value is known exactly
sol=1

` l−3d−1.
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the second derivative of the free energyf with respect to the
bulk magnetic fieldh.

Nevertheless our case is a bit special, because we want to
determine the transition line at zero bulk fieldssee Fig. 2d,
where in the dry regimesbelow the wetting transition lined
there is a first order transition region. For infinite system
there is a coexistence of phases with opposing magnetiza-
tions. So, there is a discontinuity of the first derivative of the
free energysa jump of the magnetizationm=−df /dhd, when
the bulk magnetic field changes sign. That is the reason why,
in order to calculatex sa reaction of a system for a change of
the bulk magnetic fieldd here, one should calculate the de-
rivatives for small nonzero bulk fields and then leth go to
zero. In the wet regimesabove the wetting transition lined the
most likely are the configurations, where an interface mean-
ders freely between walls and where there is no discontinuity
of the free energy derivatives, when theh=0 plane is
crossed.

For numerical calculationssas for the DMRG methodd the
necessity of performing an extra limitsh→0 in this cased is
troublesome. Therefore we decided to use another quantity
x0 instead ofx, which is also the second derivative of the
free energy at fixedT andh1, but calculated in a symmetrical
way with respect to theh=0 planesby means of the free
energy values taken for five equidistant points: −2Dh, −Dh,
0, Dh or 2Dh; we usedDh=10−5 typicallyd. Because our
calculations are always carried out for finiteL, there is not
anymore a discontinuity of the magnetization in the dry re-
gime. They are replaced by rounded, but very steep, func-
tions when theh=0 plane is crossed.

In order to determine the ID transition we scan the phase
diagram at fixedh1. The higher the temperature is, the less
steep are magnetizations and the values of their derivativex0
are smaller. Above the wetting transition line, where a dis-
continuity never exists,x0 saturates to the zero, whenT
growssx0 is equivalent tox hered. Therefore, at fixedL, the
ID transition can be indicated by the maximal slope of thex0
or the minimum of its derivative with respect to temperature.

Although all derivatives have been performed in a numerical
way, the DMRG method accuracy guarantees very precise
results.

In contrast to thed=2 Ising strip with short-range bound-
ary fields or long-range boundary fields withp.3 where the
scaling isTdsLd−Tw<L−1, Albanoet al. f10g have proposed
an alternative formula for the long-range case atp=3. They
argued that the ID transition may be shifted away from the
wetting transition temperatureTw according to the rule
TdsLd−Tw<sln Ld−2. It would mean thatTdsLd would be
more strongly depressed fromTw with decreasingL than in
the short-range case. Because their data did not allow them
to distinguish between these two possibilities we have con-
sidered this problem again.

The plots ofTdsLd in Fig. 3 show that the scaling behavior
is more complicated than it was expected before. However, it
is worth recalling that Albanoet al. f10g analyzed the scaling
of the x maxima, whereas we analyze the scaling of thex0
maximal slope. For both extrapolationssagainst 1/L and
against 1/sln Ld2d and various values of the reduced ampli-
tude of the boundary fieldh1 there are higher order correc-
tions that seem to be opposite to the leading term. The most
likely scenario is that due to them there are maxima for some
values ofL and only for largerL the data apparently follow
the leading term. The smallerh1 is the largerL is neccessary
to reach a maximum. Therefore we are not able to present
them for h1=0.025 andh1=0.2, although our calculations
have been done up toL=300–400.

In order to distinguish between both extrapolations we
compare the data ath1=0.6 for L larger than the maximum
positionsup toL=490d. Though there is no strong difference
for both curves we have checked that the better linear ap-
proximation is for the 1/L case. Therefore it is very likely
that the scaling for long-rangep=3 boundary fields has the
same asymptotic form as for short-range ones.

B. Scaling of profiles

Our second criterion is based on a shape of a profile. It is
known f20g that for the short-range case for infinite Ising

FIG. 3. Plots ofTdsh1;Ld versus 1/L sopen
circlesd and versussln Ld−2 sfilled circlesd for dif-
ferent values of the reduced amplitude of the
boundary fieldh1 at p=3 sL in units of lattice
constant;Td in units of J/kBd. The long-dashed
line is a guide for the eye.
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strips with opposing boundary fields at the ID transition the
interface meanders in such a way that the magnetization gra-
dient is constant over the whole widthL. Therefore the mag-
netization profile is characterized by the scaling function of a
linear form

msld = mbS1 −
2l

L
D . s4d

In order to localize the ID transitionTdsh1;Ld at a certain
temperatureT, boundary field scans can be performed for
lengthsL andL+2. The profiles are compared according to
the quantity

dsLd = F 1

L
o
l=1

L Smsld
mb

D2G1/2

s5d

which measures a deviation from the bulk magnetization. To
compare the data forL and L+2 we rescalel to value sl
−1d / sL−1d which varies between 0 and 1. Then at the value
of h1, wheredsLd anddsL+2d cross each other as functions
of h1, both profiles are the most similar. This optimal scaling
corresponds to the ID transition. The procedure can be ap-
plied to the long-range case as well. As one can see in Fig. 2
the limiting L→` results are in an excellent agreement with
those from the first criterion.

It is worth stressing that although profiles for subsequent
L andL+2 are of the same shapefdsLd=dsL+2d on the ID
transition lineg they change whenL grows. Figure 4 collects
the data for bothp at T=1.8. Forp=50, which means the
short-range boundary fields, the profiles collapse rapidly to
the straight line. The largerL is the smaller are the minor
deviations at ends. A similar scenario holds atp=3. Although
generally plots are here less linear, they seem also to con-
verge towards the universal shape predicted for the case of
short-range boundary fields.

C. Specific heat

The third criterion is based on the behavior of the specific
heatCh1

, which is calculated as the second derivative of the
free energy with respect to temperature at fixedh1. It is
known f21g that there are two maxima ofCh1

. Whereas the
stronger one is related toTc f22g, the weaker one corresponds
to the wetting. Whenh1 goes down the second maximum
merges in the first one, which prevents one from calculating
Tdsh1;Ld for small h1.

As one can see in Fig. 2 the third criterion results coincide
with the previous ones.

IV. KELVIN EQUATION

In order to find the corrections to the Kelvin equation it is
preferable to consider only temperatures not too close toTc,
where DMRG iterations converge very quickly. Moreover,
when one is far belowTc, one avoids the effect of crossover
from an initial scalingsfor small Ld according to Eq.s2d
towards the final scalingsfor enough largeLd according to
the Kelvin equation. In the present study we have calculated
a series of values ofh0sLd up toL=690 with different values
of boundary fields atT=1.

Our calculations have been carried out for two ranges of
boundary fields:p=3 andp=9. Whereas the first case is the
marginal long-range case for wetting, the second one is to
show that here we practically meet short-range behavior.

We assume the following expansion for the bulk magnetic
field h0, which restores the phase coexistence:

h0sLd =
A

La +
B

Lg + ¯ , s6d

where we expecta=1 andA to be given by the Kelvin equa-
tion fEq. 1g. In order to calculate the exponentsa andg we
define the logarithmic derivatives:

xL ; −
lnfh0sLdg − lnfh0sL + 30dg

ln L − lnsL + 30d
, s7d

for L=30,60, . . . ,690sin steps ofL=30d. Then introducing
the expansions6d into the definitions7d one has to the lowest
orders in 1/L

FIG. 4. Magnetization profilesmsld versussl −1d / sL−1d at T
=1.8 fsl −1d / sL−1d and magnetization are dimensionlessg.

FIG. 5. The plots ofxL versus 1/L for the short-range boundary
fields sp=9d sL in units of lattice constant;xL dimensionlessd.
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xL = aS1 −
B

A

1

Lg−a + ¯ D . s8d

Figures 5 and 6 show plots ofxL versus 1/L for different
values of boundary fields atp=9 and 3, respectively. For the
first case the wall-spin interactions decays so fast that there
we expect short-ranged boundary behavior. From the exact
solution of Abraham one knows that the surface field corre-
sponding to the wetting temperatureTw=1, is equal toh1
<0.927. Therefore it is clear that the plots in Fig. 5 forh1
,0.927 correspond to the case of partial wetting, where the
scaling behavior ofxL should be linear in 1/L since one
expectsg=2 and a=1 in Eq. s6d. The fact that the data
follow straight lines confirms the behavior predicted by the
theory for the short-range casesp=9d. It is worth noticing
that ath1=0.85, the data follow a straight line only for large
L. Therefore, we can conclude that the closerh1 is to the
coexistence line valuesat h1<0.927 hered, the largerL is
necessary to reach an asymptotic regime.

A qualitatively similar behavior is observed for the long-
range boundary fields in Fig. 6sat p=3d, but the linear de-
pendence occurs here only belowh1=0.80. It is in perfect
agreement with our data for thep=3 wetting transitionssee
Fig. 2d, whereTw=1 for h1,0.73.

As one can see in Figs. 5 and 6 the values of the leading
scaling exponent, obtained from the DMRG converge very
well to the expected valuea=1 f11g. Thus the Kelvin equa-
tion dependence is of fairly general character and it does not
depend on the range of the boundary fields, which is in an
agreement with the Monte Carlo resultsf10g. To consider
higher-order correctionsssettinga=1d one obtains from Eq.
s8d

lnsxL − 1d = lnUB

A
U − sg − 1dln L + ¯ . s9d

Figures 7 and 8 show plots of lnsxL−1d versus lnL for
different values of surface fields atp=9 and 3, respectively.
In both cases the behavior at partial and complete wetting
can be clearly distinguished.

At partial wetting the straight dotted lines with slope −1
fit very well the asymptotic behavior, sog=2 here. At com-
plete wetting for largeL the plots are well fitted with dashed
lines with slope −2/3sg=5/3d in agreement with the current
theory. However, one can observe that the smaller the range
of the boundary fields is, the largerL is necessary to reach

FIG. 6. The plots ofxL versus 1/L for the long-range boundary
fields sp=3d sL in units of lattice constant;xL dimensionlessd.

FIG. 7. The plots of lnsxL−1d versus lnL for the short-range
boundary fieldssp=9d. The meaning of the symbols is the same as
in Fig. 5 sL in units of lattice constant;xL dimensionlessd.

FIG. 8. The plots of lnsxL−1d versus lnL for the long-range
boundary fieldssp=3d. The meaning of the symbols is the same as
in Fig. 6 sL in units of lattice constant;xL dimensionlessd.

FIG. 9. The magnetization profiles of the two coexisting phases
at T=1 andh1=1 sfor L=120d, approaching complete wetting, for
different boundary fieldsfsl −1d / sL−1d and magnetization are
dimensionlessg.
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the asymptotic regime. Therefore, in agreement with the pre-
vious resultsf11g, in Fig. 7 sa short-range case practicallyd
the data for a large interval ofL smore or less up toL
=250d are well fitted by straight lines with slope −1/3sg
=4/3d. It is consistent with the previous explanation that
even for large system sizes, likeL=100–200, the wetting
layer has a limited thickness, so the singular part of the sur-
face free energy that determines the leading correction term
behavior, is dominated by the contacts with the walls. In this
case a simple random walk argument predicts the correction
of the typeg=4/3 for a thin wetting layerf11g. When the
range of the boundary fields grows, a wetting layer is getting
thicker and for smallerL the asymptotic limitsg=5/3d is
reachedssee Fig. 8d.

The above arguments are illustrated in Fig. 9, where the
magnetization profiles for two coexisting phases are pre-
sented. The magnetizations are plotted as a function of the
scaled variablesl −1d / sL−1d at T=1 andh1=1; this corre-
sponds to a regime of complete wetting for bothp. We
should also stress that the profiles refer to bulk fields slightly
lower and higher than the coexistence fieldh0sLd. For bulk
field exactly equal toh0sLd the magnetizations of the two
coexisting phases are averaged and it is not possible to dis-
tinguish between them. The negative bulk field favors a bulk
phase with negative magnetizationsvapord but the positive
boundary fields favor the adsorption of positive spinssliquidd
at the boundaries. Since forTùTw the positive spins form a
layer that wets the walls. Obviously for a long-range bound-
ary fields sp=3d the wetting layer is thicker than for the
short-range casesp=9d.

V. CONCLUSIONS

We have analyzed the influence of long-range boundary
fields on the thermodynamics of an Ising model in a strip

geometry comparing the results to corresponding studies
with short-range boundary fields.

In the case of opposing fields at the walls the transition
line of wetting was found for various values of the fields. In
order to determinate its location three criteria have been ap-
plied fbased on thespseudod magnetic susceptibility, magne-
tization profiles and specific heatg resulting in the data which
coincide with one another in a perfect way. The data for the
short-range wall-particle interactions are in a full agreement
with the exact result. For the long-range wall-particle inter-
actions the transition line was found for the marginal case
sp=3d, where both energy and entropy of relevant degrees of
freedom scale withL in the same way. It is worth noticing
that this line is in agreement with the shift of the coexistence
line at fixed temperature found for the identical boundary
fields.

In the case of identical boundary fields we have confirmed
that the bulk coexistence field scales always according to the
Kelvin equation and have verified the previous results for
leading correction terms at partial and complete wetting. We
have found that for the long-range case the wet layer is
thicker with respect to the short-range case which results in
shrinking of the region with the leading correction term of
the type 1/L4/3. This confirms the previously proposed sce-
nario to explain the origin of the anomalous corrections to
the Kelvin equation at complete wetting.

Generally, our studies have shown that a range of bound-
ary fields is not relevant at the marginal casep=3 in the
asymptotic regime of largeL.
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